Abstract

Chemodynamic therapy (CDT) is an emerging treatment that usually employs chemical agents to decompose hydrogen peroxide (H2O2) into hydroxyl radical (•OH) via Fenton or Fenton‐like reactions, inducing cell apoptosis or necrosis by damaging biomacromolecules such as, lipids, proteins, and DNA. Generally, CDT shows high tumor‐specificity and minimal‐invasiveness in patients, thus it has attracted extensive research interests. However, the catalytic reaction efficiency of CDT is largely limited by the relatively high pH at the tumor sites. Herein, a 808 nm laser‐potentiated peroxidase catalytic/mild‐photothermal therapy of molybdenum diphosphide nanorods (MoP2 NRs) is developed to improve CDT performance, and simultaneously achieve effective tumor eradication and anti‐infection. In this system, MoP2 NRs exhibit a favorable cytocompatibility due to their inherent excellent elemental biocompatibility. Upon irradiation with an 808 nm laser, MoP2 NRs act as photosensitizers to efficiently capture the photo‐excited band electrons and valance band holes, exhibiting enhanced peroxidase‐like catalytic activity to sustainedly decompose tumor endogenous H2O2 to •OH, which subsequently destroy the cellular biomacromolecules both in tumor cells and bacteria. As demonstrated both in vitro and in vivo, this system exhibits a superior therapeutic efficiency with inappreciable toxicity. Hence, the work may provide a promising therapeutic technique for further clinical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.