Abstract

This is the first report of molybdenum carbide-based electrocatalyst for sulfur-based sodium-metal batteries. MoC/Mo2 C is in situ grown on nitrogen-doped carbon nanotubes in parallel with formation of extensive nanoporosity. Sulfur impregnation (50 wt%S)results in unique triphasic architecture termed molybdenum carbide-porous carbon nanotubes host (MoC/Mo2 C@PCNT-S). Quasi-solid-state phase transformation to Na2 S is promoted in carbonate electrolyte, with in situ time-resolved Raman, X-ray photoelectron spectroscopy, and optical analyses demonstrating minimal soluble polysulfides. MoC/Mo2 C@PCNT-S cathodes deliver among the most promising rate performance characteristics in the literature, achieving 987 mAh g-1 at 1 A g-1 , 818 mAh g-1 at 3 A g-1 , and 621 mAh g-1 at 5 A g-1 . The cells deliver superior cycling stability, retaining 650 mAh g-1 after 1000 cycles at 1.5 A g-1 , corresponding to 0.028% capacity decay per cycle. High mass loading cathodes (64 wt%S,12.7mg cm-2 ) also show cycling stability. Density functional theory demonstrates that formation energy of Na2 Sx (1 ≤ x≤ 4) on surface of MoC/Mo2 C is significantly lowered compared to analogous redox in liquid. Strong binding of Na2 Sx (1 ≤ x≤ 4) on MoC/Mo2 C surfaces results from charge transfer between the sulfur and Mo sites on carbides' surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.