Abstract

The self-complementary oligonucleotide CGCATATATGCG was used as a model to establish the binding interactions of antitumor molybdenocene dichloride and DNA. The free dodecamer was first characterized using 1H, NOESY, and DQF-COSY NMR experiments, which enable to pinpoint the guanines and adenines as well as the cytosines and thymines signals in the aromatic region. Molybdenocene dichloride was characterized in saline and buffer solutions as function of pH by 1H NMR spectroscopy. In 10 mM NaCl/D 2O solution at pH of 6.5 and above, Cp 2Mo(OD)(D 2O) + is in equilibrium with its dimeric species, [Cp 2Mo(μ-OH) 2MoCp 2] 2+. In 25 mM Tris/4 mM NaCl/D 2O at physiological pH, a new stable species is formed, coordinated by the buffer, Tris(hydroxymethyl)aminomethane. The interactions of molybdenocene dichloride species with CGCATATATGCG were studied at different pH. At pH 6.5, in 4 mM NaCl/D 2O solution, 1H NMR spectra of CGCATATATGCG exhibit downfield shifts in the signals associated mainly to adenines and guanines, upon addition of molybdenocene dichloride. At pH 7.4, in 25 mM Tris/4 mM NaCl/D 2O, molybdenocene species causes broadening and small downfield shifts to the purines and pyrimidine signals, suggesting that molybdenocene dichloride can get engaged in binding interactions with the oligonucleotide in a weak manner. 31P NMR spectra of these interactions at pH 7.4 showed no changes associated to Mo(IV)-OP coordination, indicating that molybdenocene–oligonucleotide binding interactions are centered, most likely, on the bases. Cyclic voltammetry titration showed a 4.9% of molybdenocene–oligonucleotide interaction. This implicates that possible binding interactions with DNA are weak.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.