Abstract

A gene cluster consisting of homologs to Escherichia coli moaA, moeA, moaC and moaE, which encode enzymes involved in the biosynthesis of molybdopterin cofactor (MoCo), and to modA, modB and modC, which encode a high-affinity molybdate transporter, were identified on pAO1 of Arthrobacter nicotinovorans near genes of molybdopterin-dependent enzymes involved in nicotine degradation. This gene arrangement suggests a coordinated expression of the MoCo-dependent and the MoCo-biosynthesis genes and shows that catabolic plasmids may carry the transport and biosynthetic machinery for the synthesis of the cofactors needed for the functioning of the enzymes they encode. pAO1 MoeA functionally complemented E. coli moeA mutants. The overexpressed and purified protein, of molecular mass 44,500 Da, associated into high-molecular-mass complexes and spontaneously formed gels at concentrations above 1 mg/ml. Transmission electron microscopy and atomic force microscopy revealed that MoeA forms fibrilar structures. In the presence of Mg2+ MoeA exhibited ATPase activity (0.020 pmol ATP x pmol protein(-1) x min(-1)). ATP, ADP or AMP induced the disassembly of the MoeA fibers into aggregates. pAO1 MoeA shows 39% identity to the C-terminal domain of the rat neuroprotein gephyrin. Like gephyrin it binds to neurotubulin, but binds with preference to tubulin dimers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.