Abstract
The lack of suitable cathode materials with a high capacity and good stability is a crucial problem affecting the development of aqueous Zn-ion batteries. Herein, a novel strategy for the modification of V2CTx through molten salt thermal treatment is proposed. In the novel route, S heteroatoms were introduced into V2CTx through a substitution reaction during the dissolution of Li2S in LiCl-KCl molten salts. Then, surface V2O5 was obtained through the in situ electrochemical charging/discharging of the S-doped V2CTx (MS-S-V2CTx) cathode. The assembled Zn/MS-S-V2CTx battery showed a high reversible discharge capacity of 411.3 mAh g-1 at a current density of 0.5 A g-1, an 80% capacitance retention after long cycle stability tests at 10 A g-1 for 3000 cycles, and a high energy density of 375.5 Wh kg-1 in 2M ZnSO4. Density functional theory calculations demonstrate that the improved electrochemical performance of the cathode can be attributed to the introduced S heteroatoms, which considerably reduced the ion diffusion energy barrier for Zn2+ ions and improved the stability of V2O5. This work provides a novel method to produce highly active and stable vanadium-based cathodes for aqueous Zn-ion batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.