Abstract
The Nuclear Energy Advance Modeling and Simulation Program (NEAMS) of the US Department of Energy (DOE) aims to develop advanced simulation tools to aid the development of advanced nuclear technologies. The high-fidelity PROTEUS code was developed in the NEAMS program for reactor physics analysis. This paper tests the applicability of the PROTEUS code to simulate a Molten Salt Reactor (MSR). The OpenMC code based on the Monte Carlo Method was employed to generate the cross sections and to provide stochastic solutions for verification. The PROTEUS code was successfully employed to simulate the steady-state performance of an MSR represented by the ThorCon core design. The 2D lattice, 2D core, and 3D full core calculations performed by PROTEUS show good agreement with that predicted by OpenMC. For the nodal option within PROTEUS, the precursor drift model was also tested, and this effect resulted in a reduction of the k-eff by 300 pcm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.