Abstract

Existing CO2-mediated oxidative dehydrogenation (CO2-ODH) of ethane has yet to demonstrate >60% single-pass CO yield due to the intrinsic equilibrium limitations. We report a unique approach with mixed molten carbonates as a reaction medium for CO2-ODH, which strategically partitions the CO2-ODH reactions into gas and molten-salt phases and facilitates integrated CO2 capture from power plant flue gases. An 89% CO yield was achieved at 770°C, doubling the equilibrium limitation of conventional CO2-ODH. The high CO yield in turn enhances ethylene formation. Further characterizations confirmed that molten-salt mediated ODH (MM-ODH) proceeds through a gas-phase cracking and molten-salt mediated reverse water-gas-shift reaction pathway. Based on this understanding, thermodynamic analysis and ab initio molecular dynamics simulations were conducted to develop general principles to optimize the molten-salt reaction medium. Process analyses confirm that MM-ODH has the potential to be significantly more efficient for CO2 capture and utilization than conventional CO2-ODH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.