Abstract
The state-of-the-art conventional technology for postcombustion capture of CO2 from fossil-fueled power plants is based on chemical solvents, which requires substantial energy consumption for regeneration. A promising alternative, available in the near future, is the application of molten carbonate fuel cells (MCFC) for CO2 separation from postcombustion flue gases. Previous studies related to this technology showed both high efficiency and high carbon capture rates, especially when the fuel cell is thermally integrated in the flue gas path of a natural gas-fired combined cycle or an integrated gasification combined cycle plant. This work compares the application of MCFC-based CO2 separation process to pulverized coal fired steam cycles (PCC) and natural gas combined cycles (NGCC) as a “retrofit” to the original power plant. Mass and energy balances are calculated through detailed models for both power plants, with fuel cell behavior simulated using a 0D model calibrated against manufacturers' specifications and based on experimental measurements, specifically carried out to support this study. The resulting analysis includes a comparison of the energy efficiency and CO2 separation efficiency as well as an economic comparison of the cost of CO2 avoided (CCA) under several economic scenarios. The proposed configurations reveal promising performance, exhibiting very competitive efficiency and economic metrics in comparison with conventional CO2 capture technologies. Application as a MCFC retrofit yields a very limited (<3%) decrease in efficiency for both power plants (PCC and NGCC), a strong reduction (>80%) in CO2 emission and a competitive cost for CO2 avoided (25–40 €/ton).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Electrochemical Energy Conversion and Storage
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.