Abstract
Molten salts are a very relevant member of industrial fluids for high temperature applications, such as catalytic medium for coal gasification, molten salt oxidation of wastes, heat transfer fluids or latent, sensible heat storage and solar (CSP) or nuclear power station operations. Available data on thermophysical properties, applications and a discussion of the state of the art for molten alkali carbonates and its mixtures like pure Li2CO3, Na2CO3 and K2CO3, mixtures of Li2CO3-Na2CO3, Li2CO3-K2CO3 (binary eutectics) and Li2CO3-Na2CO3-K2CO3 (ternary eutectic) and nanofluids based in these carbonate melts are presented. These melts are especially suitable for application at higher temperature regimes, like those involving high temperature energy storage, coolants or molten salts oxidations of wastes and therefore the accurate knowledge of their most important thermophysical properties is essential for efficient energy transfer and storage, because of their impact on energy efficiency, namely in energy savings and decrease of carbon footprint. From the analysis performed it can be concluded that the scatter of data found for molten alkali carbonates, added to present and future applications, still justifies further studies on these systems, to support their application as alternative engineering fluids. Additionally, some comments on how to improve present situation of methods and measurements are made, especially in the area of thermal conductivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.