Abstract

Molecular structure recognition is the task of translating a molecular image into its graph structure. Significant variation in drawing styles and conventions exhibited in chemical literature poses a significant challenge for automating this task. In this paper, we propose MolScribe, a novel image-to-graph generation model that explicitly predicts atoms and bonds, along with their geometric layouts, to construct the molecular structure. Our model flexibly incorporates symbolic chemistry constraints to recognize chirality and expand abbreviated structures. We further develop data augmentation strategies to enhance the model robustness against domain shifts. In experiments on both synthetic and realistic molecular images, MolScribe significantly outperforms previous models, achieving 76-93% accuracy on public benchmarks. Chemists can also easily verify MolScribe's prediction, informed by its confidence estimation and atom-level alignment with the input image. MolScribe is publicly available through Python and web interfaces: https://github.com/thomas0809/MolScribe.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.