Abstract
Retroviruses contain two plus-strand genomic RNAs, which are stably but noncovalently joined in their 5' regions by a dimer linkage structure (DLS). Two models have been put forward to explain the mechanisms by which the RNAs dimerize; each model emphasizes the role of specific molecular determinants. The kissing-loop model implicates interactions between palindromic sequences in the DLS region. The second model proposes that purine-rich stretches in the region form purine quartet structures. Here, we present an examination of the in vitro dimerization of Moloney murine sarcoma virus (MuSV) RNA in the context of these two models. Dimers were found to form spontaneously in a temperature-, time-, concentration-, and salt-dependent manner. In contrast to earlier reports, we found that deletion of neither the palindrome nor the consensus purine motifs (PuGGAPuA) affected the level of dimer formation at low concentrations of RNA. Rather, different purine-rich sequences, i.e., consecutive stretches of guanines, were found to enhance both in vitro RNA dimerization and in vivo viral replication. Biochemical evidence further suggests that these guanine-rich (G-rich) stretches form guanine quartet structures. We also found that the palindromic sequences could support dimerization at significantly higher RNA concentrations. In addition, the G-rich stretches were as important as the palindromic sequence for maintaining efficient viral replication. Overall, our data support a model that entails contributions from both of the previously proposed mechanisms of retroviral RNA dimerization.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.