Abstract
The construction, management, and analysis of large in silico molecular libraries is critical in many areas of modern chemistry. Herein, we introduce the MOLecular LIibrary toolkit, "molli", which is a Python 3 cheminformatics module that provides a streamlined interface for manipulating large in silico libraries. Three-dimensional, combinatorial molecule libraries can be expanded directly from two-dimensional chemical structure fragments stored in CDXML files with high stereochemical fidelity. Geometry optimization, property calculation, and conformer generation are executed by interfacing with widely used computational chemistry programs such as OpenBabel, RDKit, ORCA, NWChem, and xTB/CREST. Conformer-dependent grid-based feature calculators provide numerical representation and interface to robust three-dimensional visualization tools that provide comprehensive images to enhance human understanding of libraries with thousands of members. The package includes a command-line interface in addition to Python classes to streamline frequently used workflows. Parallel performance is benchmarked on various hardware platforms, and common workflows are demonstrated for different tasks ranging from optimized grid-based descriptor calculation on catalyst libraries to an NMR chemical shift prediction workflow from CDXML files.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.