Abstract

The intellectual community focused on nanomotors has recently become interested in extending these concepts to individual molecules. Here, we study a chemical reaction according to whose mechanism some intermediate species should speed up while others slow down in predictable ways, if the nanomotor hypothesis of boosted diffusion holds. Accordingly, we scrutinize the absolute diffusion coefficient (D) during intermediate steps of the catalytic cycle for the CuAAC reaction (copper-catalyzed azide-alkyne cycloaddition click reaction), using proton pulsed field-gradient nuclear magnetic resonance to discriminate between the diffusion of various reaction intermediates. We observe time-dependent diffusion that is enhanced for some intermediate molecular species and depressed for those whose size increases owing to complex formation. These findings point to the failure of the conventional Stokes-Einstein equation to fully explain diffusivity during chemical reaction. Without attempting a firm explanation, this paper highlights aspects of the physics of chemical reactions that are imperfectly understood and presents systematic data that can be used to assess hypotheses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call