Abstract

Molecule-optimized basis sets, based on approximate natural orbitals, are developed for accelerating the convergence of quantum calculations with strongly correlated (multireferenced) electrons. We use a low-cost approximate solution of the anti-Hermitian contracted Schrödinger equation (ACSE) for the one- and two-electron reduced density matrices (RDMs) to generate an approximate set of natural orbitals for strongly correlated quantum systems. The natural-orbital basis set is truncated to generate a molecule-optimized basis set whose rank matches that of a standard correlation-consistent basis set optimized for the atoms. We show that basis-set truncation by approximate natural orbitals can be viewed as a one-electron unitary transformation of the Hamiltonian operator and suggest an extension of approximate natural-orbital truncations through two-electron unitary transformations of the Hamiltonian operator, such as those employed in the solution of the ACSE. The molecule-optimized basis set from the ACSE improves the accuracy of the equivalent standard atom-optimized basis set at little additional computational cost. We illustrate the method with the potential energy curves of hydrogen fluoride and diatomic nitrogen. Relative to the hydrogen fluoride potential energy curve from the ACSE in a polarized triple-ζ basis set, the ACSE curve in a molecule-optimized basis set, equivalent in size to a polarized double-ζ basis, has a nonparallelity error of 0.0154 au, which is significantly better than the nonparallelity error of 0.0252 au from the polarized double-ζ basis set.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call