Abstract

Starting from the equation of motion in the density matrix formulation, we reformulate the analytical gradient of the excited-state energy at the time-dependent density functional theory level in the nonorthogonal Gaussian atom-centered orbital (AO) basis. Analogous to the analytical first derivative in molecular-orbital (MO) basis, a Z-vector equation has been derived with respect to the reduced one-electronic density matrix in AO basis, which provides a potential possibility to exploit quantum locality of the density matrix and avoids the matrix transformation between the AO and the MO basis. Numerical tests are finished for the excited-state geometry optimization and adiabatic excitation energy calculation of a series of small molecules. The results demonstrate the computational efficiency and accuracy of the current AO-based energy gradient expression in comparison with the MO-based scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.