Abstract

Atherosclerosis, a chronic cardiovascular disease caused by plaque development in arteries, remains a leading cause of morbidity and mortality. Atherosclerotic plaques are characterized by the expression and regulation of key molecules such as cell surface receptors, cytokines, and signaling pathway proteins, potentially facilitating precise diagnosis and treatment on a molecular level by specifically targeting the characteristic molecules. In this review, we highlight the recent progress in the past five years on developing molecularly targeted nanomedicine for imaging detection and treatment of atherosclerosis with the use of inorganic nanoparticles. Through targeted delivery of imaging contrast nanoparticles to specific molecules in atherogenesis, atherosclerotic plaque development at different stages could be identified and monitored via various molecular imaging modalities. We also review molecularly targeted therapeutic approaches that target and regulate molecules associated with lipid regulation, inflammation, and apoptosis. The review is concluded with discussion on current challenges and future development of nanomedicine for atherosclerotic diagnosis and treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.