Abstract

Interfacial recombination and ion migration between perovskite and electron-transporting materials have been the persisting challenges in further improving the efficiency and stability of perovskite solar cells (PVSCs). Here, we design a series of molecularly tailorable clusters as an interlayer that can simultaneously enhance the interaction with C60 and perovskite. These clusters have precisely controlled structures, decent charge carrier mobility, considerable solubility, suitable energy levels, and functional ligands, which can help passivate perovskite surface defects, form a uniform capping net to immobilize C60, and build a robust coupling between perovskite and C60. The target inverted PVSCs achieve an impressive power conversion efficiency (PCE) of 25.6% without the need for additional surface passivation. Crucially, the unencapsulated device displays excellent stability under light, heat, and bias, maintaining 98% of its initial PCE after 1500 hours of maximum power point tracking. These results show great promise in the development of advanced interfacial materials for highly efficient perovskite photovoltaics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.