Abstract
Engineering membranes for molecular separation in organic solvents is still a big challenge. When the selectivity increases, the permeability tends to drastically decrease, increasing the energy demands for the separation process. Ideally, organic solvent nanofiltration membranes should be thin to enhance the permeant transport, have a well-tailored nanoporosity and high stability in harsh solvents. Here, we introduce a trianglamine macrocycle as a molecular building block for cross-linked membranes, prepared by facile interfacial polymerization, for high-performance selective separations. The membranes were prepared via a two-in-one strategy, enabled by the amine macrocycle, by simultaneously reducing the thickness of the thin-film layers (<10 nm) and introducing permanent intrinsic porosity within the membrane (6.3 Å). This translates into a superior separation performance for nanofiltration operation, both in polar and apolar solvents. The hyper-cross-linked network significantly improved the stability in various organic solvents, while the amine host macrocycle provided specific size and charge molecular recognition for selective guest molecules separation. By employing easily customized molecular hosts in ultrathin membranes, we can significantly tailor the selectivity on-demand without compromising the overall permeability of the system.
Highlights
Engineering membranes for molecular separation in organic solvents is still a big challenge
Related approaches consider the integration of well-defined crystalline microporous materials such as metal−organic frameworks (MOFs) and covalent organic frameworks (COFs) for selective separations[12,13,14,15,16]
Trianglamine was selected as a monomer for membrane fabrication based on its size, functionality, and synthesis
Summary
Engineering membranes for molecular separation in organic solvents is still a big challenge. When targeting membranes for liquid separation stability, high permeance and selectivity are required, and integrating functional macrocycles as a reactive monomer in interfacial polymerization has been demonstrated as one of the most effective approaches for nanofiltration[29,30]. The six reactive amino groups per trianglamine molecules led to the formation of a high crosslinking density with demonstrated excellent performance as a membrane for molecular separation in an organic solvent medium.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.