7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1002/jmr.2992
Copy DOIPublication Date: Sep 25, 2022 | |
Citations: 4 |
The overdose of acetaminophen (AP) can cause serious acute liver injury even the irreversible liver necrosis. The quantitative detection of AP is of great significance not only for clinical applications but also for the quantity control of its pharmaceutical formulations. In this paper, a sensitive molecularly imprinted voltammetric sensor towards AP was constructed based on synergistic enhancement of nitrogen-vacancy graphitized carbon nitride (NV-g-C3 N4 ) and carboxylated MWCNTs loaded with silver nanoparticles (Ag-MWCNTs). The powder X-Ray diffraction spectrum, field emission scanning and transmission electron microscopes, cyclic voltammetry (CV), and electrochemical impedance spectrum were used to characterize the composites. The results show that NV-g-C3 N4 and Ag-MWCNTs closely embedded each other, forming loose porous hybrid structure by hydrogen bond. The prepared sensor molecular imprinting polymer (MIP)/C3 N4 /Ag-CNTs/GCE shows a strong synergistic enhancement of electroanalytical response by CV and differential pulse voltammetry (DPV) tests when compared with NV-g-C3 N4 /GCE, Ag-CNTs/GCE, and MIP/GCE. Through the optimization of the ratio of monomer and template, electropolymerization cycle, elution cycle, incubation time, and pH, linear ranges of 0.007-5 and 5-100 μM were found with the limit of detection of 2.33 nM by DPV. Moreover, its selectivity towards AP was satisfied when compared with detection towards ascorbic acid, dopamine, and glucose. The recovery range of 96.3%-100.5% was obtained in the spiked human serum and urine samples with the SD below 3.0%. In addition, the prepared sensor shows great detecting robustness with good anti-interference, reproducibility, and stability.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.