Abstract

Molecularly imprinted polymers are ideal alternatives to natural recognition elements for a variety of reasons, including facile synthesis, greater chemical and long term stability, and reusability. One of the most challenging tasks in developing such polymers is provide them of a signal transduction capability, enabling to respond to a specific binding event. In this thesis, protein-imprinted polymers, capable of specific transduction of binding event into a fluorescence change were prepared using an assistant-peptide bearing an environment-sensitive fluorophore. The preparation has included the synthesis of the environment-sensitive peptide and subsequent incorporation into the polymer network through the imprinting process. Binding studies proved that MIP-SA-allyl-peptide has large absorption capacity and good affinity and selectivity toward BSA when compared with pure MIP. The greater binding properties of MIP-SA-allyl-peptide were found to derive from the assistant-peptide that suitably oriented into the cavity, acts as binding site in cooperation with the imprinted cavity. Furthermore, transduction signaling studies proved that MIP-SA-allyl-dansyl-peptide is able to detect and report the protein binding into a precise detection range. The proposed fluorescent-imprinted polymer provides a new and general strategy for protein-sensing platforms and opens up to the field of biosensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.