Abstract

A proof-of-concept sensor is developed for the sensitive and selective detection of Trans-Δ⁹-tetrahydrocannabinol (THC) based on a molecularly imprinted polymer (MIP) synthesized with a THC template which was analyzed using Raman spectroscopy to perform label-free monitoring of THC based on a single identifying Raman peak. The MIP sensor produced a peak at 1614 cm−1 in the Raman spectrum originating from the THC target molecule, allowing for the selective quantification of bound THC with the lowest detection limit of 250 ppm. A higher sensitivity of the MIP to the THC target molecule was observed compared to the non-imprinted polymer (NIP) control which confirmed the presence of THC-specific recognition sites within the synthesized MIP sensing material. The selectivity of this MIP-based sensor was determined by measuring the Raman spectrum of MIP exposed to Cannabidiol (CBD), ethanol, and acetone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call