Abstract

To develop the semiconductor of ZnO nanomaterials as the fluorescence sensor without leakage toxicity. Here, a molecularly imprinted polymer captivity ZnO nanorods (NRs) (MIPs-captivity ZnO NRs) was fabricated by precipitation polymerization. Such traditional technology was not only achieved the specific recognition for direct fluorescent quantification of the target tetracycline (TC) through fluorescence quenching, but also formed the shield to reduce the toxic effects of ZnO towards organisms. Under the optimized experimental conditions, the MIPs-captivity ZnO NRs were effectively applied to the direct fluorescence quantification of TC with excellent stability. Moreover, the practical analytical performance of the MIPs-captivity ZnO NRs was assayed by appraising the detection effects of TC in water sample from the Yangtze River with satisfactory results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call