Abstract

In this paper, an electrochemical sensor based on a dual recognition strategy of molecularly imprinted polymers (MIPs) and aptamer (Apt) has been designed for the high sensitivity detection of chloramphenicol (CAP). Here, MIPs and Apt have provided dual recognition sites to greatly improve the specific recognition ability of the sensor. Chitosan-multi-walled carbon nanotubes (CS-MWNTs) and AuNPs (gold nanoparticles) have been used for their excellent electrical conductivity. When CAP existed in the detection environment, the imprinted cavities with specific recognition ability bound to CAP through forces such as hydrogen bonds. It hindered the rate of electron transfer and resulted in a decrease in current value. Quantitative detection of CAP could be achieved after analyzing the relationship between the concentration of CAP and the change of current value. After optimizing the experimental parameters, the detection range of the sensor was 10−8 g/L-10−2 g/L with the limit of detection of 3.3 × 10−9 g/L, indicating that the sensor had a high practical application potential.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call