Abstract

Molecularly imprinted polymer microspheres for selective binding and recognition of atenolol were prepared by means of precipitation polymerization method using methacylic acid as functional monomer and trimethylolpropane trimethacrylate as cross-linker in the presence of atenolol as template molecule in acetonitrile solution. Computer simulation was employed to demonstrate the mechanism of the interaction between methacylic acid and atenolol. The scanning electron microscopy exhibited that the polymers were uniform spheres with the diameter of about 0.6µm. The adsorption properties of atenolol for imprinted microspheres were evaluated by equilibrium rebinding experiments. Scatchard plot analysis revealed that there were two classes of binding sites in the imprinted microspheres. The dissociation constant and the apparent maximum binding capacity were 4.56×10-4mol/L and 186.46μmol/g for the high affinity binding sites, 2.40×10-2mol/L and 4.01mmol/g for the low affinity binding sites. Compared to the structrally analogues, the imprinted microspheres exhibited a high selective reconizable capacity towards the template.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.