Abstract

This review describes recent advances associated with the development of surface imprinting methods for the synthesis of polymeric membranes and thin films, which possess the capability to selectively and specifically recognize biomacromolecules, such as proteins and single- and double-stranded DNA, employing "epitope" or "whole molecule" approaches. Synthetic procedures to create different molecularly imprinted polymer membranes or thin films are discussed, including grafting/in situ polymerization, drop-, dip-, or spin-coating procedures, electropolymerization as well as micro-contact or stamp lithography imprinting methods. Highly sensitive techniques for surface characterization and analyte detection are described, encompassing luminescence and fluorescence spectroscopy, X-ray photoelectron spectroscopy, FTIR spectroscopy, surface-enhanced Raman spectroscopy, atomic force microscopy, quartz crystal microbalance analysis, cyclic voltammetry, and surface plasmon resonance. These developments are providing new avenues to produce bioelectronic sensors and new ways to explore through advanced separation science procedures complex phenomena associated with the origins of biorecognition in nature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.