Abstract

Ultrasensitive detection of serotonin is crucial for the early diagnosis of several diseases like Parkinson's and Alzheimer's. Most of the existing detection strategies are still not suitable for sensitive point-of-care applications. This study presents direct molecular imprinting of serotonin on the surface of three-dimensional zinc oxide (ZnO) nanorod devices connected in a field effect transistor (FET) configuration to achieve ultrasensitive, real-time, and rapid detection with a convenient and affordable approach, which has significant potential for translation to clinical settings. This strategy has enabled pushing the detection limit to 0.1 fM in a physiological analyte in real time with screen-printed electrodes, thereby resulting in the convenient batch fabrication of sensors for clinical validation. The response of the sensor with the clinical sample has been correlated with that of the gold standard and has been observed to be statistically similar.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.