Abstract

Molecularly imprinted polymers (MIPs) for chlorogenic acid (CGA) were prepared by modified precipitation polymerization using methacrylic acid as a functional monomer, divinylbenzene as a crosslinker and methanol or dimethylsulfoxide as a co-solvent. The prepared MIPs were microspheres with a narrow particle size distribution. Binding experiments and Scatchard analyses revealed that two classes of binding sites, high and low affinity sites, were formed on the MIP. The retention and molecular-recognition properties of the prepared MIP were evaluated using a mixture of water and acetonitrile as a mobile phase in hydrophilic interaction chromatography. With an increase of acetonitrile content, the retention factor of CGA was increased on the MIP. In addition to shape recognition, hydrophilic interactions seem to work for the recognition of CGA on the MIP. The MIP had a specific molecular-recognition ability for CGA, while other related compounds, such as caffeic acid, gallic acid, protocatechuic acid and vanillic acid, could not be recognized by the MIP. Furthermore, the MIP for CGA was successfully applied for extraction of CGA in the leaves of Eucommia ulmodies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.