Abstract
Bisphenol A (BPA) contamination from food packaging material has been a major concern in recent years, due to its potential endocrine-disrupting effects on humans, especially infants and children. This paper reports the detection of BPA using an electrochemical sensor based on molecularly imprinted polymer (MIP). Electrochemically reduced graphene oxide coated glassy carbon electrode used for this study. Density functional theory (DFT) at B3LYP/6–31 + G (d,p) level was used to calculate the molecular-level interaction between BPA and MIP. The pyrrole electrochemically polymerized in the presence of template molecule BPA on the electrode surface. BPA imprinted cavities were formed by removing entrapped BPA molecules from the polypyrrole film. MIP electrode was used for the determination of BPA in standard and real samples by differential pulse voltammetry. The peak current shows the linear relationship to the logarithmic concentration of BPA between 750 and 0.5 nmolL−1 with a correlation coefficient, R2 = 0.992. The limit of detection was found to be 0.2 nmolL−1 (S/N = 3). The reproducibility and repeatability of the sensor were also studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.