Abstract

A highly selective electrochemical sensor has been developed for the determination of the pesticide molecule, 2,4-dichlorophenol (2,4-DCP) using molecularly imprinted conducting polymer. 2,4-dichlorophenol imprinted polymer films were prepared by electropolymerising 3,4-ethylenedioxythiophene (EDOT) on surface of carbon fiber paper electrode (CFP) in presence of 2,4-dichlorophenol. Electrochemical over-oxidation was carried out for the controlled release of 2,4-DCP templates and to generate definite imprinting sites. Surface morphology of the imprinted electrode was analysed by Scanning Electron Microscopy-Energy Dispersive X-ray Spectrometry, Fourier Transform Infrared and Raman spectroscopy. In optimized conditions, the voltammetric sensor gave a linear response in the range of 0.21 nM – 300 nM. The significantly low detection limit (0.07 nM) demonstrates the ultra-low sensitivity of the method. The imprinted sensor displayed higher affinity and selectivity towards the target 2,4-DCP over similar structural analogical interference than the non-imprinted sensor. MIP sensor was efficaciously employed for the selective determination of 2,4-DCP in real samples of water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call