Abstract

Molecularly imprinted nanofiber membranes (MIM) were used to enhance the degradation of trace bisphenol A (BPA) by Pseudomonas aeruginosa. MIM were prepared by encapsulating BPA-imprinted polymeric nanoparticles (MIPs) into biocompatible polyvinyl alcohol (PVA) nanofibers using electrospinning. MIPs inside MIM could enrich BPA and its intermediate metabolites 4-hydroxyacetophenone (HAP) selectively. At the same time, BPA degrading-bacteria P. aeruginosa could be attached and immobilized on the biocompatible MIM. BPA and HAP enriched by the MIM increased the substrates’ concentration in the vicinity of the immobilized bacteria, which enhanced the degradation efficiencies. The increased BPA level and the amounts of immobilized bacteria on the membranes were strongly correlated to BPA biodegradation rate (r=0.90 and 0.87, respectively). The enhancement of MIM on biodegradation was significant in water containing interferences as well as in environmental water. The MIM could continuously enhance the degradation of trace BPA (2μg/L) in waste water during a 10-day experiment. After 24h of hydraulic retention time, BPA level in the effluent was below the limit of detection (<0.026μg/L). The combination of MIM with BPA-degrading bacteria provided a simple and practical method for in situ biodegradation of trace BPA in water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.