Abstract

Graphene oxide based molecularly imprinted polymer was designed by incorporating vinyltrimethoxysilane into the layers of graphene oxide, which was copolymerized with functional monomers such as Itaconic acid (IA) and methyl methacrylate (MMA) was developed via bulk imprinting technique. The prepared polymer was studied for selective sensing the uric acid (UA) in blood serum. The electrode was constructed by modifying bare glassy carbon electrodes with the prepared molecularly imprinted polymer (MIP) via drop cast method. Electrochemical measurements were made by Cyclic voltammetric (CV) and Differential Pulse Voltammetric (DPV) response of the sensor. The physical and chemical properties of the resultant material will be characterized by FTIR spectroscopy, XRD and FESEM. The constructed sensor showed a regression coefficient (R2) of 0.9302 with limit of detection (LOD) of about 0.565 ​μM. The developed sensor is reusable without any compromise in its selectivity. All the results confirm that the constructed biosensor requires no pre-treatment of samples and is suitable for real sample analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call