Abstract

An efficient approach that integrates a molecularly imprinted conducting polymer, polypyrrole (PPY) with a sensitive electrochemical impedance sensing platform for the quantification of dibutyl phthalate (DBP) was presented. The molecular imprinting process was employed by one-pot step by the electrochemical polymerization of the pyrrole which enabled control of polymer film thickness, easy adherence of the polymer layers on the sensing substrate and simplicity of the fabrication. Molecular imprinted polymer (MIP) modified surfaces were characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM). EIS technique was carried out as a detection method since DBP molecules are electrically insulative and non-electroactive. In the molecular imprinting process, each step was optimized and the linear response was obtained in the range between 0.01–1.0 μM of DBP concentrations with a low detection limit as 4.5 nM under optimized conditions. Also, the relative standard deviation (RSD) was calculated as 5.21% for six different electrodes which were prepared independently. The developed sensor provided useful platform for rapid, simple and inexpensive detection of DBP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.