Abstract
Glycoproteins play vital roles in living organisms and often serve as biomarkers for some disease. However, due to the low content of glycoprotein in biological fluids, selective detection of glycoproteins is still a challenging issue that needs to be addressed. In this study, molecularly imprinted colloidal array with multi-boronic acid sites for glycoprotein detection under physiological pH was proposed. Monodispersed glycoprotein imprinted particles (SiO2@PEI/MIPs) was first prepared based on surface imprinting strategy using horseradish peroxidase (HRP) as template, and polyethyleneimine (PEI) was used to increase the number of boronic acid groups. The binding experiment indicated that the SiO2@PEI/MIPs hold satisfactory adsorption capacity (1.41 μmol/g), rapid adsorption rate (40 min) and preferable selectivity toward HRP. Then the SiO2@PEI/MIPs was assembled into close-packed colloidal array to construct a label free optical sensor (denoted as GICA). Benefiting from the high ordered photonic crystal structure, binding of HRP onto the GICA could be directly readout from the changes in structure color and diffracted wavelength. The structure color of the GICA changed from bright blue to yellow with the diffraction wavelength red shifted 59 nm when the HRP concentration increased from 2.5 to 15 μmol/L. Importantly, the GICA was capable of detecting HRP from human serum samples. All those results indicated the potential of the GICA for naked-eye detection of glycoprotein.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.