Abstract

Human serum albumin (HSA) is a major blood plasma protein also found in urine where its existence may be a marker of some types of liver or kidney dysfunction. Herein, we fabricated a novel surface plasmon resonance (SPR) nanosensor for selective, sensitive, and label-free microalbumin detection both in aqueous and urine sample solutions. First, HSA-imprinted nanoparticles were synthesized, which consist of ethylene glycol dimethacrylate and N-methacryloyl-L-leucine methyl ester as a cross-linker and functional monomer. The nanoparticles were characterized by zeta-size and scanning electron microscope analyses and were dropped onto the SPR chip surface to make HSA sensitive nanosensor. Characterization studies of HSA-imprinted SPR chip were carried out by atomic force microscopy, Fourier-transform infrared spectroscopy, contact angle, and ellipsometer. The limit of detection and limit of quantification values of HSA-imprinted SPR nanosensor were calculated as 0.7 pM and 1.9 pM for the concentration range of 0.15–500 nM. Selectivity studies of HSA-imprinted SPR nanosensor were achieved with hemoglobin and transferrin proteins which were chosen as competitor molecules. HSA-imprinted SPR nanosensor was displayed highly selective and sensitive to HSA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call