Abstract

Developing more sustainable catalytic processes for preparing N-heterocyclic compounds in a less costly, compact, and greener manner from cheap and readily available reagents is highly desirable in modern synthetic chemistry. Herein, we report a straightforward synthesis of benzimidazoles by reductive coupling of o-dinitroarenes with aldehydes in the presence of molecular hydrogen. An innovative molecular cluster-based synthetic strategy that employs Mo3S4 complexes as precursors have been used to engineer a sulfur-deficient molybdenum disulfide (MoS2)-type material displaying structural defects on both the naturally occurring edge positions and along the typically inactive basal planes. By applying this catalyst, a broad range of functionalized 2-substituted benzimidazoles, including bioactive compounds, can be selectively synthesized by such a direct hydrogenative coupling protocol even in the presence of hydrogenation-sensitive functional groups, such as double and triple carbon–carbon bonds, nitrile and ester groups, and halogens as well as diverse types of heteroarenes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call