Abstract

In this study, we investigated the voltage and pH responsiveness of human serum transferrin (hSTf) protein using silicon nitride (Si xN y) nanopores. The Fe(III)-rich holo form of hSTf was dominant when pH > pI, while the Fe(III)-free apo form was dominant when pH < pI. The translocations of hSTf were purely in an electrophoretic sense, thus depended on its pI and the solution pH. With increasing voltage, voltage driven protein unfolding became prominent which was indicated by the trends associated with change in conductance, due to hSTf translocation, and in the excluded electrolyte volume. Additionally, analysis of the translocation events of the pure apo form of hSTf showed a clear difference in the event population compared to that of the holo form. The results obtained demonstrate the successful application of nanopore devices to distinguish between the holo and apo forms of hSTf in a mixture and to analyze its folding and unfolding phenomenon over a range of pH and applied voltages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.