Abstract
AbstractDespite great recent progress with carbon nanotubes and other nanoscale fillers, the development of strong, durable, and cost‐efficient multifunctional nanocomposite materials has yet to be achieved. The challenges are to achieve molecule‐level dispersion and maximum interfacial interaction between the nanofiller and the matrix at low loading. Here, the preparation of poly(vinyl alcohol) (PVA) nanocomposites with graphene oxide (GO) using a simple water solution processing method is reported. Efficient load transfer is found between the nanofiller graphene and matrix PVA and the mechanical properties of the graphene‐based nanocomposite with molecule‐level dispersion are significantly improved. A 76% increase in tensile strength and a 62% improvement of Young's modulus are achieved by addition of only 0.7 wt% of GO. The experimentally determined Young's modulus is in excellent agreement with theoretical simulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.