Abstract

We have combined numerous characterization techniques to investigate the growth of tensile-strained and n-doped Ge films on Si(001) substrates by means of solid-source molecular-beam epitaxy. The Ge growth was carried out using a two-step growth method: a low-temperature growth to produce strain relaxed and smooth buffer layers, followed by a high-temperature growth to get high crystalline quality Ge layers. It is shown that the Ge/Si Stranski–Krastanov growth mode can be completely suppressed when the growth is performed at substrate temperatures ranging between 260°C and 300°C. X-ray diffraction measurements indicate that the Ge films grown at temperatures of 700–770°C are tensile-strained with typical values lying in the range of 0.22–0.24%. Cyclic annealing allows further increase in the tensile strain up to 0.30%, which represents the highest value ever reported in the Ge/Si system. n-Doping of Ge was carried out using a GaP decomposition source. It is shown that heavy n-doping levels are obtained at low substrate temperatures (210–250°C). For a GaP source temperature of 725°C and a substrate temperature of 210°C, a phosphorus concentration of about 1019cm−3 can be obtained. Photoluminescence measurements reveal an intensity enhancement of about 16 times of the direct band gap emission and display a redshift of 25meV that can be attributed to band gap narrowing due to a high n-doping level. Finally, we discuss about growth strategies allowing optimizing the Ge growth/doping process for optoelectronic applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call