Abstract

Natural photosynthesis uses an array of molecular structures in a multiphoton Z-scheme for the conversion of light energy into chemical bonds (i.e., solar fuels). Here, we show that upon excitation of both a molecular photocatalyst (PC) and a substituted naphthol (ROH) in the presence of a sacrificial electron donor and proton source, we achieve photocatalytic synthesis of H2. Data support a multiphoton mechanism that is catalytic with respect to both PC and ROH. The use of a naphthol molecule as both a light absorber and H2 producing catalyst is a unique motif for Z-scheme systems. This molecular Z-scheme can drive a reaction that is uphill by 511 kJ mol-1 and circumvents the high-energy constraints associated with the reduction of weak acids in their ground state, thus offering a new paradigm for the production of solar fuels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call