Abstract

Monodisperse polystyrenes (PS) of different molecular weights (M-n) synthesized by living anionic polymerization with three types of butyllithium initiator (linear, n; secondary, sec; and tertiary, tert) were analyzed by ToF-SIMS (time-of-flight secondary ion mass spectrometry). The influence of the molecular weight on the secondary ion intensities was studied in detail for the fingerprint part of the mass spectra (with m/z < 200). A drastic effect was observed for M-n values below 10(4), related to the presence of the saturated butyl end group. An extra hydrogen transfer originating from this end group during the secondary ion formation must be invoked to explain the data. Only the first neighbor monomer repeat units seem to be affected. This H exchange increases the intensity of ions containing more hydrogen or needing H transfer for their formation as the tropylium ion (C7H7+ at m/z = 91). The molecular structure of the butyl end group is found to influence greatly not only the intensity of their parent ion but also the PS characteristic ion intensities. Indeed, the tert-butyl end group is seen unable to produce the H transfer observed for the n- and sec-butyl ones. A model is proposed to take the influence of the end group on the PS SIMS fragmentation pattern into account. The parameters of this model allow the quantification of the end group interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.