Abstract

The commercialization of proton exchange membrane (PEM) fuel cells depends largely upon the development of PEMs whose properties are enhanced over current perfluorinated sulfonic acid PEMs. Understanding how a PEM's molecular weight and morphology affect its relevant performance properties is essential to this effort. Changes in molecular weight were found to have little effect on the phase separated morphologies, water uptake, and proton conductivities of random copolymers. Changes in block length, however, have a pronounced effect on multiblock copolymers, affecting surface and bulk morphologies, water uptake, proton conductivity, and hydrolytic stability, suggesting that multiblock copolymer PEM properties may be optimized by changes in morphology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.