Abstract

AbstractPoly(ethylene terephthalate) (PET) formation in homogeneous, continuous‐flow‐stirred tank reactors (HCSTRs) operating at steady state has been simulated. The feed to the reactor is assumed to consist of the monomer bis‐(hydroxyethyl) terephthalate and monofunctional compound (MF1) cetyl alcohol. The overall polymerization is assumed to consist of the polycondensation, reaction with monofunctional compounds, redistribution, and cyclization reactions. At a given time, the reaction mass consists of polyester molecules (Pn), polyester molecules with an ending of molecules of monofunctional compound (MFn), and cyclic polymers (Cn). A mass balance for each of these species in the reactor gives rise to a set of algebraic equations to be solved simultaneously. The MWD calculations show that the redistribution reaction plays a major role and cannot be ignored, This result is in contrast lo the observation for semi‐batch reactors, for which redistribution becomes important when the cyclization reaction is included. For the same residence times of semi‐batch and HCSTRs, the latter gives considerably lower‐number average molecular weight, Nav, and polydispersity index, ρ. However, for the same conversions, the ρ for CSTR is higher. The concentration of the monofurctional compound, [MF1]0, in the feed and the reactor temperature both influence ρ, but the effect is small within the range studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.