Abstract
H 2 NMR quadrupole interaction spectroscopy has been used to measure the molecular weight dependence of poly(dimethylsiloxane) chain deformation under shear in a cylindrical Couette cell while NMR velocimetry has been used to directly measure shear rates. The signals were acquired from a perdeuterated benzene probe molecule, which provides a motionally averaged sampling of the entire segmental ensemble. We have measured the dependence on shear rate of the SXX (velocity), SYY (velocity gradient), and SZZ (vorticity) elements of the segmented alignment tensor, fitting the data using the standard Doi–Edwards theory and modified to allow for convected constraint release. Our results suggest that the tube disengagement times scale as molecular weight to the power 3.5±0.1, consistent with the usual 3.4 power law. Our velocimetry measurements indicate a reproducible and consistent slip occurring at high molecular weights (>1 M Dalton), a phenomenon which is independently observed in a lower than expected chain deformation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.