Abstract

Ribulose bisphosphate (RuP2) carboxylase from the marme cyanobacterium, Synechococcus sp., comprised both large (57,000 dalton) and small (12,000 dalton) subunits. The undissociated, purified enzyme was considerably smaller than the spinach enzyme when compared by pore-gradient electrophoresis, gel filtration and density-gradient centrifugation. This suggested that the cyanobacterial enzyme might have a hexameric (L6S6) subunit structure, unlike the enzymes from spinach and many other organisms which are octamers (L8S8). However, the molecular weight of the Synechococcus enzyme was measured by equilibrium sedimentation and found to be 530,000, which is within the range observed for L8S8-type enzymes. Furthermore, electron microscopic studies of negatively stained preparations of both the native enzyme, and a preparation depleted of 87% of its small subunits by repeated mild-acid precipitation, revealed four-fold symmetry characteristic of an octameric, cubical structure. Synechococcus RuP2 carboxylase therefore must be an L8S8 octamer and its anomalous pore-penetration behaviour may be due to an asymmetric shape. Some support for the latter possibility was provided by electron miscoscopic observations of two different types of images which may be different views of the molecule in two planes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.