Abstract
We present a kinematically complete and time-resolved study of the dissociation dynamics of ${\mathrm{H}}_{2}{}^{+}$ using ultrashort extreme-ultraviolet and near-infrared laser pulses. The reaction kinematics can be controlled by varying the time delay between the two pulses. We demonstrate that a time-dependent laser-dressed potential-energy curve enables the control of the nuclear motion. The dynamics is well reproduced by intuitive semiclassical trajectories on a time-dependent potential curve. From this most fundamental scenario we gain insight in the underlying mechanisms which may be applied as design principles for molecular quantum control, particularly for ultrafast molecular reactions involving the motion of protons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.