Abstract

The microscopic origin of mechanical enhancement in polymer nanocomposite (PNC) melts is investigated through the combination of rheology and small-angle neutron scattering. It is shown that in the absence of an extensive particle network, the molecular deformation of polymer chains dominates the stress response on intermediate time scales. Quantitative analyses of small-angle neutron scattering spectra, however, reveal no enhanced structural anisotropy in the PNCs, compared with the pristine polymers under the same deformation conditions. These results demonstrate that the mechanical reinforcement of PNCs is not due to molecular overstraining, but instead a redistribution of strain field in the polymer matrix, akin to the classical picture of hydrodynamic effect of nanoparticles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call