Abstract

The chemistry of a common copper deposition precursor, (hexafluoroacetylacetonate)Cu(vinyltrimethylsilane), ( hfac)Cu(VTMS), on a single crystal Si(1 0 0)-2 × 1 surface is described at the molecular level using a combination of experimental surface analytical techniques under ultra-high vacuum conditions with computational analysis. At a cryogenic temperature of 100 K, ( hfac)Cu(VTMS) adsorbs on this surface molecularly, without noticeable decomposition. Upon surface annealing, VTMS is easily released into the gas phase below the room temperature, while the hfac ligand is bound to the surface through the copper atom. When ( hfac)Cu(VTMS) is adsorbed at room temperature, VTMS is released into the gas phase immediately, leaving surface adsorbate analogous in structure to the one formed by adsorption at cryogenic temperature and a brief annealing to room temperature. Upon surface annealing, the hfac ligand decomposes and constitutes the main source of impurities in copper deposition process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call