Abstract
The nuclear-electronic orbital (NEO) approach treats all electrons and specified nuclei, typically protons, on the same quantum mechanical level. Proton vibrational excitations can be calculated using multicomponent time-dependent density functional theory (NEO-TDDFT) for fixed classical nuclei. Recently the NEO-DFT(V) approach was developed to enable the calculation of molecular vibrational frequencies for modes composed of both classical and quantum nuclei. This approach uses input from NEO-TDDFT to construct an extended NEO Hessian that depends on the expectation values of the quantum protons as well as the classical nuclear coordinates. Herein strategies are devised for extending these approaches to molecules with multiple quantum protons in a self-contained, effective, and computationally practical manner. The NEO-TDDFT method is shown to describe vibrational excitations corresponding to collective nuclear motions, such as linear combinations of proton vibrational excitations. The NEO-DFT(V) approach is shown to incorporate the most significant anharmonic effects in the molecular vibrations, particularly for the hydrogen stretching modes. These theoretical strategies pave the way for a wide range of multicomponent quantum chemistry applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.