Abstract
Molecular dynamics in binary mixtures of water and glycerol was studied by measuring the spectrum of water velocity auto-correlation in the frequency range from 0.05−10 kHz by using the NMR method of modulated gradient spin echo. The method shows that the diversity of diffusion signature in the short spin trajectories provides information about heterogeneity of molecular motion due to the motion in the micro-vortexes of hydrodynamic fluctuation, which is especially pronounced for the mixtures with low glycerol content. As concentration of glycerol increases above 10vol%, a new feature of spectrum appears due to interaction of water molecules with the clusters formed around hydrophilic glycerol molecules. New spectrum exposes a rate thickening of molecular friction, according to Einstein–Smoluchowski–Kubo formula, which inhibits rapid molecular motions and creates the conditions for a slow process of spontaneously folding of disordered poly-peptides into biologically active protein molecules when immersed in such a mixture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.