Abstract

Targeting antigen to dendritic cells (DCs) is a promising way to manipulate the immune response and to design prophylactic molecular vaccines. In this study, the cattle XCL1, ligand of XCR1, was fused to the type O foot-and-mouth disease virus (FMDV) multi-epitope protein (XCL-OB7) to create a molecular vaccine antigen, and an △XCL-OB7 protein with a mutation in XCL1 was used as the control. XCL-OB7 protein specifically bound to the XCR1 receptor, as detected by flow cytometry. Cattle vaccinated with XCL-OB7 showed a significantly higher antibody response than that to the △XCL-OB7 control (P<0.05). In contrast, when XCL-OB7 was incorporated with poly (I:C) to prepare the vaccine, the antibody response of the immunized cattle was significantly decreased in this group and was lower than that in the △XCL-OB7 plus poly (I:C) group. The FMDV challenge indicated that cattle immunized with the XCL-OB7 alone or the △XCL-OB7 plus poly (I:C) obtained an 80% (4/5) clinical protective rate. However, cattle vaccinated with △XCL-OB7 plus poly (I:C) showed more effective inhibition of virus replication than that in the XCL-OB7 group after viral challenge, according to the presence of antibodies against FMDV non-structural protein 3B. This is the first test of DC-targeted vaccines in veterinary medicine to use XCL1 fused to FMDV antigens. This primary result showed that an XCL1-based molecular vaccine enhanced the antibody response in cattle. This knowledge should be valuable for the development of antibody-dependent vaccines for some infectious diseases in cattle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call